Poisson Random Fields for Dynamic Feature Models

نویسندگان

  • Valerio Perrone
  • Paul A. Jenkins
  • Dario Spanò
  • Yee Whye Teh
چکیده

We present the Wright-Fisher Indian buffet process (WF-IBP), a probabilistic model for time-dependent data assumed to have been generated by an unknown number of latent features. This model is suitable as a prior in Bayesian nonparametric feature allocation models in which the features underlying the observed data exhibit a dependency structure over time. More specifically, we establish a new framework for generating dependent Indian buffet processes, where the Poisson random field model from population genetics is used as a way of constructing dependent beta processes. Inference in the model is complex, and we describe a sophisticated Markov Chain Monte Carlo algorithm for exact posterior simulation. We apply our construction to develop a nonparametric focused topic model for collections of time-stamped text documents and test it on the full corpus of NIPS papers published from 1987 to 2015.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Dynamic Frailty and Change Point Models for Recurrent Events Data

Abstract. We present a Bayesian analysis for recurrent events data using a nonhomogeneous mixed Poisson point process with a dynamic subject-specific frailty function and a dynamic baseline intensity func- tion. The dynamic subject-specific frailty employs a dynamic piecewise constant function with a known pre-specified grid and the baseline in- tensity uses an unknown grid for the piecewise ...

متن کامل

Examples of Macroeconomic and Non-Economic Dynamic Models That are Not Self Averaging

This paper describes examples of non-self averaging phenomena drawn from macroeconomic and physics fields. They are models of random clusters, such as Poisson-Dirichlet models, urn models, and models of random transport through disordered media. In particular, we discuss several three-parameter extension of the two parameter Poisson-Dirichlet model. These three parameter models inherit non-self...

متن کامل

Propagation Models and Fitting Them for the Boolean Random Sets

In order to study the relationship between random Boolean sets and some explanatory variables, this paper introduces a Propagation model. This model can be applied when corresponding Poisson process of the Boolean model is related to explanatory variables and the random grains are not affected by these variables. An approximation for the likelihood is used to find pseudo-maximum likelihood esti...

متن کامل

Monte Carlo Comparison of Approximate Tolerance Intervals for the Poisson Distribution

The problem of finding  tolerance intervals receives very much attention of researchers and are widely used in various statistical fields, including biometry, economics, reliability analysis and quality control. Tolerance interval is a random interval  that covers a specified  proportion of the population with a specified confidence level. In this paper, we compare approximate tolerance interva...

متن کامل

Posterior Consistency of Bayesian Nonparametric Models Using Lévy Random Field Priors

Department of Statistical Science, Duke University March 24, 2008 We show the posterior consistency of certain nonparametric regression models using Lévy Random field priors. An easily verifiable sufficient condition is derived for the posterior consistency to hold in popular models which use Lévy random fields for regression and function estimation. We apply our results to a Poisson regression...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of Machine Learning Research

دوره 18  شماره 

صفحات  -

تاریخ انتشار 2017